Categorized EEG Neurofeedback Performance Unveils Simultaneous fMRI Deep Brain Activation
نویسندگان
چکیده
Decades of Electroencephalogram-NeuroFeedback (EEG-NF) practice have proven that people can be effectively trained to selectively regulate their brain activity, thus potentially improving performance. A common protocol of EEG-NF training aims to guide people via a closedloop operation shifting from high-amplitude of alpha (8-14Hz) to highamplitude of theta (4-7 Hz) oscillations resulting in greater theta/alpha ratio (T/A). The induction of such a shift in EEG oscillations has been shown to be useful in reaching a state of relaxation in psychiatric conditions of anxiety and mood disorders. However, the clinical implication of this practice remains elusive and is considered to have relatively low therapeutic yield, possibly due to its poor specificity to a unique brain mechanism. The current project aims to use simultaneous acquisition of Functional Magnetic Resonance Imaging (fMRI) and EEG in order to unfold in high spatial and temporal resolutions, respectively the neural modulations induced via T/A EEG-NF. We used real time EEG preprocessing and analysis during the simultaneous T/A EEG-NF/fMRI. A data driven algorithm was implemented off-line to categorize individual scans into responders and non-responders to the EEG-NF practice via a temporal signature of T/A continuous modulation. Comparing the two groups along with their parasympathetic Heart-Rate reactivity profile verified the relaxed state of the responders. Projection of responders variations in the T/A power to the fMRI whole brain maps revealed networks of correlated and inversely correlated activity reflecting induced relaxation, uniquely among responders.\keywords{neuro-feedback, simultaneous fMRI/EEG, theta /alpha ratio, limbic network }
منابع مشابه
Self-regulation of human brain activity using simultaneous real-time fMRI and EEG neurofeedback
Neurofeedback is a promising approach for non-invasive modulation of human brain activity with applications for treatment of mental disorders and enhancement of brain performance. Neurofeedback techniques are commonly based on either electroencephalography (EEG) or real-time functional magnetic resonance imaging (rtfMRI). Advances in simultaneous EEG-fMRI have made it possible to combine the tw...
متن کاملUnimodal Versus Bimodal EEG-fMRI Neurofeedback of a Motor Imagery Task
Neurofeedback is a promising tool for brain rehabilitation and peak performance training. Neurofeedback approaches usually rely on a single brain imaging modality such as EEG or fMRI. Combining these modalities for neurofeedback training could allow to provide richer information to the subject and could thus enable him/her to achieve faster and more specific self-regulation. Yet unimodal and mu...
متن کاملHow to Build a Hybrid Neurofeedback Platform Combining EEG and fMRI
Multimodal neurofeedback estimates brain activity using information acquired with more than one neurosignal measurement technology. In this paper we describe how to set up and use a hybrid platform based on simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), then we illustrate how to use it for conducting bimodal neurofeedback experiments. The paper is in...
متن کاملCorrigendum: Inefficient Preparatory fMRI-BOLD Network Activations Predict Working Memory Dysfunctions in Patients with Schizophrenia
Patients with schizophrenia show abnormal dynamics and structure of temporally -coherent networks (TCNs) assessed using fMRI, which undergo adaptive shifts in preparation for a cognitively demanding task. During working memory (WM) tasks, patients with schizophrenia show persistent deficits in TCNs as well as EEG indices of WM. Studying their temporal relationship during WM tasks might provide ...
متن کاملReal-time fMRI neurofeedback of the mediodorsal and anterior thalamus enhances correlation between thalamic BOLD activity and alpha EEG rhythm.
Real-time fMRI neurofeedback (rtfMRI-nf) with simultaneous EEG allows volitional modulation of BOLD activity of target brain regions and investigation of related electrophysiological activity. We applied this approach to study correlations between thalamic BOLD activity and alpha EEG rhythm. Healthy volunteers in the experimental group (EG, n = 15) learned to upregulate BOLD activity of the tar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011